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Abstract 

Forage yield and quality are intrinsic 
factors that dairy producers must know to 
make informed management decisions. The 
determination of these factors prior to harvest can 
take various forms. In recent years, drone-based 
remote sensing technologies have emerged as 
powerful tools for gathering high-resolution data 
about forage growth and health. Among these 
technologies are photogrammetry, hyperspectral 
imaging, LIDAR, and multispectral imaging 
sensors. Photogrammetry uses high-resolution 
images captured by drones to construct detailed 
3D models of forage, allowing for accurate 
estimation of forage height and biomass. 
Hyperspectral imaging captures data in hundreds 
of narrow spectral bands, providing detailed 
information on forage health and nutrient 
status. LIDAR technology uses laser pulses to 
measure the distance between the drone and 
the forage surface, allowing for precise height 
and biomass estimations. Multispectral imaging 
captures data in a few discrete bands, allowing 
for efficient analysis of forage quality and stress. 
From a data management and cost standpoint, 
photogrammetry may be the easiest for producer 
to implement. 

Introduction 

Alfalfa is one of the most important 
forage crops grown around the world and is 

widely used as a feed for livestock, due to its 
high protein content and digestibility. The yield 
and quality of alfalfa are critical factors that can 
have a significant impact on milk production and 
the profitability of the operation. High yields 
can ensure that producers maintain a consistent 
supply of feedstuffs throughout the year. The 
forage quality needs will depend upon the 
animal’s nutritional requirement with lactating 
dairy cows requiring a higher quality plane of 
nutrition than 12 to 18 dairy heifers. However, 
from a forage production standpoint, yield 
and quality are inversely related and tradeoffs 
between the two must be considered. Yield will 
linearly increase over time, while the quality 
will decrease over time. Operations focusing 
on maximizing yield will reduce the nutritive 
and monetary value of the forage. Whereas, 
maximizing quality will increase the value of the 
forage but will decrease the overall production 
and impair stand persistence. Both yield and 
quality are influenced by plant maturity, harvest 
timing, season, pest pressure, weed control, 
disease pressure, soil fertility, stand density, 
water availability, and weather conditions. With 
regard to quality, approximately 70% of forage 
quality is determined by harvest timing. 

Therefore, the general recommendation 
is to cut alfalfa every 28 days, as this harvesting 
frequency will provide an adequate quality and 
yield balance. The utilization of low lignin 
varieties of alfalfa has allowed for greater 
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flexibility with cutting interval as harvest could 
be delayed by ~ 5 to 10 days. Nonetheless, a 
more desirable approach would be to base the 
harvest timing on the current crop conditions 
across the field. New technologies, such as 
unmanned aerial vehicles (UAV), may allow 
for dairy producers to optimize both yield and 
quality to match their management goals.

Weather related challenges

The 28 days cutting interval has been 
recommended. However, the complicating 
factor in this region is related to the weather. 
In an evaluation looking at strictly rainfall 
events, the number of four-day harvest windows 
(day 1-cutting, day-3 raking/baling, and day 
4- transport to storage) across Kentucky was 
found to average between 35 to 50 days across 
the entire season (May 1 to September 30; Figure 
1). Thus, producers are encouraged to size the 
equipment and workforce for that time-period 
and forage harvesting goals. The evaluation 
of the four-day window over the past several 
years (2017 to 2021) has shown that we are 
generally seeing an increase in wetter weather 
when compared to the past 20 years.  For May, 
the number of four-day harvest windows ranged 
between 0 to 18 days and averaged 6 days 
(Figure 2). Due to the limited harvest window 
created during this challenging harvest period 
in May, many producers have opted to wrap 
their 1st cutting as balage. It is theorized that 
the inclusion of other meteorological factors, 
such as soil moisture, cloud cover, temperature, 
and relative humidity, into the four-day harvest 
window evaluation would likely reduce the total 
number of four-day harvest window further. 

University weather websites (https://
weather.cfaes.osu.edu) provide a plethora of 
information to farmers. For instance, the UK 
Agriculture Weather Center Point Agriculture 
Forecast provides county level weather data. In 

addition to temperature, humidity, wind direction 
and speed, and growing degree days, other 
pertinent information is provided on a county 
level. The forecasted drying conditions (poor, 
fair, and good) and evapotranspiration rates 
are provided on a county level. Furthermore, 
the percent sky cover provides an indication of 
potential drying capabilities. Weather models 
have been developed that may streamline 
future alfalfa yield predictions. Weather data 
combined with information from forage variety 
trials across different states has shown that 
models using decision tree manifested a R2 of 
0.982 for yield (Vance et al., 2022; Vance et al., 
2023). Developed models for growth could be 
integrated into university weather websites.

Traditional measurement for yield 

On most farms, yield had been 
traditionally measured on a field or farm level 
using bale counters and a scale system to 
estimate total production. The development 
of balers with scales and moisture meters has 
aided in the assessment of yield. Mass flow 
sensor have also been developed and used on 
large square balers (Kayad et al., 2015). Newer 
balers have added radio frequency identification 
(RFID) capabilities so that bales can be easily 
identified and tracked (AgCo, 2015; Drawdy and 
Weeda, 2022). The use of RFID has allowed for 
bales to be managed by field, stack, or truckload. 
Therefore, bales that possess a questionable 
moisture content could be easily separated from 
the rest. One of the new booths at the National 
Farm Machinery Show in Louisville this past 
year was the Ag Maximizer forage drier (Argi-
Green, 2023) which can dry large square bales 
from 30% moisture to 15% in ~ 15 minutes. The 
drier system uses 78 spears to inject heat and air 
into the bales. From an Extension standpoint, 
studies analyzing the energetics and efficiency 
of this system need to be conducted so that 
recommendations could be made for large scale 
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producers. From a yield standpoint, the location 
of bales within a field has also been characterized 
using drone imagery and image processing 
software (Seyyedhasani et al., 2021).

Assessing the alfalfa yield prior to baling 
has been estimated by measuring plant height 
and density. Unfortunately, this assessment 
strategy requires additional labor and time, and 
the samples acquired must be representative of 
the entire field. Additionally, simulation models 
(SIMED, ALSIM, ALFALFA 1.4, ALF2LP, and 
DSSAT-CROPGRO) have be utilized to predict 
yield but suffer from large data inputs. 

Quality:

From a quality standpoint, bale sampling 
had been the traditional way to ascertain 
differences in nutritive value. Relative feed 
value has also been measured with baler sensors 
(Gaines). Bale moisture and relative feed value 
would be predicted and assigned specific bales.  

Assessing alfalfa quality prior to baling 
within the field has typically relied on methods 
such as the predictive equation of alfalfa 
quality (PEAQ). Nutritive values such as 
neutral detergent fiber (NDF), acid detergent 
fiber (ADF), and crude protein (CP) manifest 
predictive relationships with parameters such 
as height, maturity, weed pressure, and other 
factors. These relationships can be exploited by 
remote sensing technologies to aid in the rapid 
determination of forage parameters.

Available Technologies

Satellites, manned aircraft, ground-based 
platforms, and UAV have been equipped with 
various sensors to assess crop/forage yield and 
quality. According to the USDA survey from 
2016-2019, approximately 7% of the corn and 
10%  the soybean acres have been analyzed with 

at least one of these technologies (McFadden et 
al., 2023). Of the available technologies, UAVs 
possess a multitude of advantages over other 
remote sensing systems (Table 1). UAVs provide 
the most cost-effective solution to collect high 
resolution spatial data. Furthermore, the easy of 
deployment allows for a high temporal resolution 
as well. The high resolution spatial and temporal 
data allows for site-specific management to 
take place on a field level. Monitoring and 
data acquisition can be conducted in real time. 
Furthermore, weather conditions can limit the 
use of manned aircraft or satellites, but UAVs 
can overcome this limitation.

UAVs

Three types of UAVs are available to 
researchers: fixed wing, multirotor, and hybrid. 
However, the multirotor UAV is generally 
preferred to as it is capable of vertical takeoff 
and landing, highly maneuverable, simple to 
operate, and cost effective to acquire. These 
capabilities provide the multirotor UAV with 
dynamic deployment and use capabilities. 
The hybrid UAV also has vertical takeoff and 
landing; however, this comes at a higher cost 
and maneuverability is sacrificed. 

UAV Flight Parameters

With regard to UAV flight parameters, 
altitude, image overlap, and flight speed will 
influence the final detail and precision of images 
obtained. With the flight parameters, there are 
inherent trade-offs with efficiency related to 
flight time and processing time. For instance, 
increasing altitude will increase the area covered 
per flight and decrease the post-processing time 
and the spatial resolution (number of images 
per unit area). The increased area covered, 
fewer images, and faster processing times are 
all desirable. However, this reduced resolution 
may impair or skew decision making. The 
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influence of overlap can be broken down into 
two parts: front and side overlap (Figure 3). 
Front overlap occurs in the direction of travel; 
while, side overlap occurs between the parallel 
flight paths. Overlap is required for the creation 
of orthomosaic images as tie points are essential 
to joining adjacent images. Increasing either 
overlap parameter will prolong flight time and 
reduce the area covered per flight. Increases in 
speed will generally increase the area covered. 
However, speed is limited by the sensors 
capability to achieve desired frame rate and 
spatial resolution. 

Sensors

The sensor characteristics (resolution, 
focal length, angle, and acquisition rate) will 
also  control the final detail and precision of the 
images or files collected. Table 2 lists the most 
common payloads utilized by UAVs, and there 
are tradeoffs with each sensor. For instance, 
hyperspectral will provide the most detail but 
will produce enormous data sets than can be 
cumbersome to analyze. For the hyperspectral, 
multispectral, and thermal cameras, the time of 
day for image acquisition is vital. The general 
recommendation for the time of day for UAV 
flight is noon. This will minimize shading and 
provide a more uniform reflectance. However 
for drought stress crops, the ideal time may be 
mid-morning after the dew has disappeared.

For the image and data acquired, the 
combination of the UAV flight parameters 
and sensors characteristics results in two very 
pertinent parameters: final model ground 
sampling distance (GSD) and root mean square 
error (RMSE). GSD is the linear distance of 
each side of a pixel in the image and provides 
the models spatial resolution. RMSE specifies 
the difference between the actual and model 
directional components (X, Y, and, Z)

Visual sensors using photogrammetry

RGB (red-green-blue) cameras are 
equipped on most UAVs and provide the most 
cost-effective option for acquiring images for 
estimating forage yield and quality. Predefined 
flight paths (boustrophedonic pattern) allow 
for the systematic collection of RGB images 
based upon altitude, overlap, orientation, 
GPS coordinates, and other parameters. 
Photogrammetry utilizes the parameters from 
the overlapping photographs to create detailed 
2D or 3D models of terrain, elevation, canopies, 
or crop surfaces. 

In a 2017 Kentucky study that was 
performed throughout the growing season, 
twenty quadrats (1 m3) were used to estimate 
yield and quality parameters in an 11 ha field 
(Dvorak et al., 2021). A Phantom 4 Pro with a 
20-megapixel camera was used to record video 
[30 frames/sec, 4K ultra high definition (UHD)] 
at 10 m above ground level (AGL) and a flight 
radius of 5 to 10 m with the camera pointed 
at the quadrat. Images were extracted from 
the video and processed using Pix4D. Ground 
truthing was conducted within each quadrat as 
yield, NDF, ADF, and CP were measured. For 
yield, the R2 value was found to be 0.63 when 2 
variables (mean and standard deviation for UAV 
determined canopy height) were used to develop 
models for estimating yield. Similar for nutritive 
value, the R2 values of 0.62, 0.63, and 0.62 were 
found for NDF, ADF, and CP, respectively. The 
inclusion of other variables, such as maturity, 
weed pressure, disease pressure, and insect 
pressure, increased the R2 values to 0.81, 0.81, 
0.78, and 0.79 for yield, ADF, NDF, and CP, 
respectively. However, the inclusion of the 4 
other variables requires field evaluation by a 
technician which would require additional time 
and labor. In this trial, the maturity was largely 
consistent during measurement period and pest 
pressure was low.   
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For the 2019 alfalfa analysis, flights were 
conducted in a grid pattern at 30 and 50 m AGL 
with a Phantom 4 operating at 3.3 and 5.7 m/s, 
respectively (Minch et al., 2021). The front and 
side overlap were 85 and 75%. The gimbal was 
-90° (nadir) for each altitude with -75° being 
tested at 50 m AGL. Circular pattern flights at 
10 m AGL and a flight radius of ~10 m was also 
conducted around 1 m quadrats. The work was 
initiated 7 days after the 1st harvest for the year 
and was conducted weekly until the next harvest 
after day 28. 

As expected, the lower altitude grid 
pattern flights demonstrated the lowest GSD 
(0.77 vs 1.4 cm). With the lower altitude flights, 
gaps in the alfalfa canopy and wheel traffic from 
the ground sprayer are easily visible. In the yield 
estimation models, the inclusion of 2 variables 
(mean and standard deviation of UAV estimated 
height) demonstrated an R2 of 0.60 for the 
circular pattern flights. The inclusion of a third 
variable (maturity) increased the circular pattern 
flights R2 to 0.69. For the grid pattern flights, the 
inclusion of the third variable always increased 
the R2 when compared to the 2 variable models. 
For the 2 variable yield models that possessed 
a camera angle of -90, the increase in altitude  
(30 to 50 m) resulted in a 16% increase in the 
R2 value from 0.3. However, in the 3-variable 
model, the same camera angle and change in 
altitude resulted in a 19% decrease in the R2 
value from 0.68. Surprisingly, the best yield 
estimation with the lowest RMSE and highest 
R2 was at 50 m AGL with a camera angle of 
75°. The 2 and 3 variable models were shown 
to demonstrate an RMSE (kg/ha)/R2 of 354/0.84 
and 490/0.87, respectively. Although nutritive 
analysis was not conducted, similar results to 
prior work would be expected. This work was 
performed with different fields and varieties and 
would suggest that the model for yield would 
be resilient across a multitude of geographic 
locations.

LiDAR 

LiDAR (Light Detection and Ranging) 
is a remote sensing technology that has 
revolutionized the way we collect data about 
the environment. By emitting laser pulses 
(ultraviolet, infrared, or visible light) and 
measuring the time it takes for the light to reflect 
back to the sensor, LiDAR can create detailed 
3D maps of objects and landscapes. LiDAR 
has many applications in fields such as forestry, 
geology, archaeology, and meteorology and 
has gained popularity in agriculture for crop 
monitoring and yield estimation. One of the 
most important characteristics of LiDAR is its 
ability to measure distance with high accuracy 
and precision. This is achieved through the use 
of Time-of-Flight (TOF) technology, which 
measures the time it takes for the laser pulse 
to travel to the object and back to the sensor. 
LiDAR is an active remote sensing technique, 
meaning that it relies on its own energy source 
(the laser) to illuminate the target and measure 
the reflected signal. Another important aspect 
of LiDAR is the way in which it records and 
processes data. There are two main types of 
LiDAR data collection: full waveform and 
discrete. Full waveform LiDAR records the 
entire backscattered signal, which can provide a 
wealth of information about the target object or 
landscape. Discrete LiDAR, on the other hand, 
only records the first or last backscattered signal, 
which can be less accurate but is faster and 
requires less storage space. The choice between 
full waveform and discrete LiDAR depends on 
the specific application and the desired level of 
detail and accuracy.  

Work to date with LiDAR and alfalfa 
has been limited to ground-based studies. In 
work that was conducted concurrently with the 
2019 photogrammetry data collection, a low 
cost Scanse Sweep LiDAR sensor was used to 
acquire approximately 70 data points per quadrat 
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(Sheffield et al., 2021). This sensor emitted a 
single beam of light, and 3 to 4 revolutions of 
data were collected per quadrat. When the frame 
holding the LiDAR was attached to the quadrant, 
the final height of the LiDAR sensor was 2 m 
AGL. With regard to crop height determination, 
the LiDAR derived 95th percentile height 
descriptor was determined to be the optimum 
predictor of actual measure crop height with 
an R2 of 0.90 and RMSE of 4.5 cm. The 
linear regression model for the 95th percentile 
developed provided the best fit for a single 
variable. Inclusion of other variables, such as 
other percentiles and pressures (insect, disease, 
and weed), only increased the R2 by 0.02. The 
model also functioned better with thicker stand 
densities. For the yield assessments, the best 
model was determined to be a fine gaussian 
support vector machine (SVM) which provided 
an RMSE of 376 kg/ha and an R2 of 0.75. 

However, the LiDAR systems that 
are going to be equipped on most UAVs will 
likely possess multiple channels (collection of 
~300,000 points per second) and will not be 
stationary. Increases in altitude or speed will 
decrease the point density which will reduce 
the spatial resolution. Point density is reduced 
as the speed increases.

Increases in speed allow for more 
acres to be flown per flight and reduces the 
computational requirements. Experiments in 
alfalfa that used a Velodyne Puck LITE LiDAR 
sensor on a linear motion test fixture showed that 
as the speed increased from 0.1 to 2.2 m/s, the 
maximum height measured (0.999 m) decreased 
by 13% (Dasika, 2018). Similarly, the number 
of points decreased from 300,000 to ~7,000 as 
velocity increased. The LiDAR sensor used in 
the study was 2 m AGL, and the point density 
would be much higher than would be typically 
expected in field measurement. The suggested 
maximum altitude and speed for the LiDAR 

sensor are less than 60 m AGL and 5 m/s. If 
the height estimation qualities are similar for 
soybean or corn, the optimum point density is 8 
to 10 points/m3 and the minimum point density 
is 1 point/m3 (Luo et al., 2021). Nonetheless, 
high point densities may be required for short 
crops to have improved precision of height 
measurements. Penetration of the canopy by 
the LiDAR was also achieved, and the ground 
surface was detected. The difference between 
the LiDAR determined height and ground 
surface can be used to calculate the crop surface 
model. Penetration of the canopy may reduce 
the reliance upon UAV global navigation 
satellite system (GNSS) altitude measurement 
for accuracy. The difference between the height 
parameters measured and ground surface could 
be used to estimate height. Unfortunately, alfalfa 
measurement for height were confounded by 
lodging (Dasika, 2018). Thus, no R2 or RSME 
was developed. 

Hyperspectral

Hyperspectral imaging is a passive 
remote sensing technique that has become 
more ubiquitous in agriculture research due 
to its ability to capture images of an object 
or landscape in hundreds of narrow spectral 
bands, allowing for detailed analysis of the 
reflectance properties of different materials and 
surfaces. This technique has been widely used in 
agriculture for crop monitoring, yield estimation, 
and quality assessment. The spectral range 
captured by hyperspectral imaging in the visible 
(VIS) and near-infrared (NIR) regions of the 
electromagnetic spectrum is particularly useful 
for assessing plant health and nutrient status 
by detecting chlorophyll and other pigments 
associated with photosynthesis. By analyzing 
the reflectance spectra of forages in the VIS-NIR 
range, researchers can estimate forage yield, as 
well as identify areas of stress or disease.
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In work conducted in Wisconsin in 2020, 
a DJI M-600 was flown with a Headwall Nano 
hyperspec push-broom scanner that measured 
400 to 1000 nm with 274 bands (Feng et al., 
2022). The flight altitude was 40 m AGL at 
5 m/s to provide a GSD of 2.5 cm. Flights 
were conducted on the day of harvest, 1 week 
prior to harvest, and 2 weeks prior to harvest. 
Processing of the data was aided by the use of 
different machine learning tools: support vector 
regression (SVR), random forest (RF), artificial 
neural network (ANN), and multitask learning 
(MTL). In analyzing the nutritional aspects, the 
day of harvest and 1 week prior were shown to 
provide the best predictions for CP (R2 =0.71 to 
0.75) and ADF (R2 = 0.53 to 0.60) with single-
day data. The combined data set benefitted from 
the additional growth data provided by the time-
series. The relationship among the three traits 
allowed for MLT to outperform the other models 
and demonstrate a R2 of 0.84, 0.69, and 0.66 for 
CP, ADF, and aNDF, respectively. 

One year prior (2019), yield estimations 
were conducted by the same group using 
equivalent flight parameters (Luwei Feng 
et al., 2020). Eighty published vegetative 
indices were evaluated and ranked using 
recursive feature elimination (RFE). Machine 
learning models (RF, SVR, K-nearest neighbor 
(KNN) and ensemble) were used to predict 
the yield. Ensemble models, which combine 
the predictions from various base learners, 
were shown to significantly outperform RF, 
SVR, and KNN. For yield, the ensemble model 
demonstrated an R2 of 0.874 and a RMSE 
of 220.8 kg/ha and outperformed the best 
performing single model (KNN) by 3 and 9% 
for R2 and RSME, respectively.  The selection 
of the top 25 VI, as opposed to the using the 
full features, allowed for the R2 and RMSE to 
be improved for all the models. This study also 
showed the negative impact that compaction can 
have on yield; nonetheless, the yield estimations 

for the ensemble model demonstrated an R2 
of 0.778 to 0.918 for the various compaction 
treatments. 

In a ground-based hyperspectral analysis 
of alfalfa that was conducted in Minnesota, 
400 to 2500 nm spectral data (visible (VIS), 
near-infrared (NIR), and short-wave infrared 
(SWIR)) was collected from 9 to 62 days 
after harvest (Noland et al., 2018). This 
hyperspectral measurement was augmented with 
the use of a single beam LiDAR, alfalfa maturity 
measurements, and the use of a modified growing 
degree units (GDU). With the future intent to 
measure specific spectral band from a UAV, 21 
nm bands were used to smooth spectral data, 
and regression (stepwise and random) was used 
to minimize the Bayesian information criterion 
(BIC) score and ultimately select the number 
of wavebands for each response variable (yield, 
CP, NDF, and aNDF). Six to seven wavebands 
were identified within the VIS-NIR range for 
each response variable. Across the response 
variable, 7 wavebands (351, 398, 461, 551, 
667, 712, and 1077 nm) were determined to be 
common wavebands and were labels as “utility.” 
VIS-NIR models resulted in a R2 of 0.81, 0.78, 
0.70 and 0.76 for yield, CP, NDF, and aNDF, 
respectively. The use of the utility wavebands 
resulted in an R2 of 0.78, 0.73, 0.72, and 0.70 
for yield, CP, NDF, and , respectively. The utility 
wavebands demonstrated similar prediction 
accuracy as the dedicated models. Nonetheless, 
the inclusion of an altered GDU allowed for 
the prediction accuracies of both VIS-NIR and 
utility wavebands to increase by ~20% for CP, 
NDF, and aNDF, yet the altered GDU resulted 
in only small increases in prediction accuracy 
for yield. The R2 between LiDAR and yield was 
0.85, and the yield equation is shown below. The 
inclusion of LiDAR in both VIS-NIR and utility 
wavebands allowed for the prediction accuracies 
of only yield to increase by approximately 6%.
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Yield = 0.9474x+226.6 

In a review of remote sensing in alfalfa, 
Tedesco et al. (2022) asserted that for yield 
and quality assessment, the following VIS-
NIR wavelengths have demonstrated strong 
potential prediction accuracies: 428, 478, 529, 
551,580,631, 670, 682,730, 733, 780, 783, 834, 
865, 885, 933, and 983. Further work must be 
performed with these spectra to demonstrate 
viability across varieties, regions, and years.  

Multispectral

Multispectral sensors capture images 
in several specific spectral bands, allowing 
for the detection and analysis of specific 
features or properties of crops and soil. The 
use of multispectral imaging in agriculture 
has facilitated various applications, including 
crop monitoring, yield estimation, and quality 
assessment. Multispectral imaging with drones 
typically utilizes a 5-band sensor that selects 
for blue, green, red, red edge, and infrared 
wavebands. In an 2018 experiment conducted 
at Washington State University (Chandel et al., 
2021), a quadcopter was flown at 100 m AGL 
2 to 6 day prior to the 1st and 3rd cutting of 
alfalfa, and the flight path for the quadcopter 
with a 5 band multispectral sensor was planned 
to achieve 85% front and 75% side overlap. 
Several VI were evaluated and multiple linear 
regression model was demonstrated to be the 
most desirable with an R2 of 0.68. The limited 
number of day studies prior to harvest was 
surmised to limit potential of the models. The 
researcher suggested that adding weather data 
may strengthen future analysis. 

Cost

From a producer adoption standpoint, 
the cost is a huge consideration. The per acre 
flight cost for conducting UAV flight with a RGB 

sensor and associated software are dependent 
upon the total number of flights conducted and 
associated average number of acres covered. 
If 52 flights were conducted over the growing 
season with 50 acres covered per flight (~15 
minutes), the cost estimate would be ~$1 to 2 per 
acre per flight.  With similar flight parameters, 
the multispectral sensor would possess a similar 
cost structure with ~$1.50 to 2 per acre per flight.

A larger drone would be required to 
carry the Lidar sensor or hyperspectral sensor. 
Hyperspectral sensors would be cost prohibitive 
for most farms. Therefore, the determination 
of specific waveband of importance would be 
essential for the development of dedicated lower 
cost sensors.

Availability 

From a pract ical i ty s tandpoint , 
photogrammetry and multispectral analysis 
would be the easiest for producers to adopt. 
Farmers will undoubtedly face challenges, 
but the image analysis software allows for the 
processing to be conducted online. The use of the 
required equations would need to be simplified. 
Extension agents can help with the transition. 
Kentucky Agriculture and Natural Resource 
agents in two counties currently utilize UAVs 
with multispectral cameras to evaluate crops 
(including alfalfa). The drones were purchased 
by the individual counties. The cost for the 
image processing software was provided initially 
by the UK Barnhart Fund for Excellence Grant 
and is currently covered by the UK Biosystems 
and Agriculture Engineering Department. 

Summary

Within agriculture, we are entering 
a more digital age, and adoption of new 
technology will be essential for the future 
viability of farms. Digital agriculture involves 
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the integration of advanced technologies, such 
as sensors, drones, and artificial intelligence 
(AI) into farming practices. Real-time or near 
real time data collection and analysis will be the 
goal of future research endeavors. UAVs will 
allow for the rapid determination of yield and 
nutritive value of forages within a field or farm 
prior to harvest. It is important to note that UAV 
flights for commercial purposes (monitoring 
forages) requires producers to take and pass 
the FAA Part 107 knowledge test to become a 
licensed remote pilot. More research needs to 
be conducted with the “utility” waveband being 
used with a UAV platform. The inclusion of 
weather data, such as the modified GDU, seems 
promising for augmenting UAV collected data. 
Weather will ultimately still play a dominating 
role in determining when to cut. Nonetheless, 
the addition of UAV estimated yield and quality 
should allow for producers to better characterize 
their go/no-go decision-making strategies for 
harvest.
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Table 1. General comparison of common remote sensing technologies (Delavarpour et al., 2021).

Specification	 Ground-Based	 Satellite	 Manned Aircraft	 UAVs

Cost		  Low	 Highest	 High	 Lowest
Susceptibility to Weather	 Yes	 Yes	 Yes	 Limited
Feasibility for Small Fields	 Yes	 No	 No	 Yes
Spatial Resolution	 Highest	 Low	 Moderate	 Highest

Table 2. General summary of common UAV sensors (Delavarpour et al., 2021). 

UAV Sensor	 Cost	 Description	 Uses1

RGB (Red-Green-Blue) 	 Low	 Visual bands-Visible red, 	 1.  Orthomosaic
Camera 		  green, and blue information	 2.  Photogrammetry
			   3.  DEM, DTM, CSM
			   4.  Vegetative height
   			   5.  Inferred quality from 	
			        height

Multispectral Camera	 Moderate	 Five-bandpass inference filter	 Vegetative indices
		  Blue (~475 nm), green (~560) 	 Detection of diseases
		  nm, red (~668 nm), red edge 	 and weeds			 
		  (~717 nm) and near infrared 
		  (~840 nm)	

Hyperspectral Camera	 Highest	 100’s of bands	 1.  Plant stress
			   2.  Compositional 		
			        analysis 
			   3.  Quality assessment

LiDAR (Light detection	 Moderate	 Rapid pulses of light	 DEM, DTM, CSM,
and ranging)			   Crop height

Thermal 	 Moderate	 Infrared radiation	 Water stress

1DEM = Digital Elevation Model, DTM = Digital Terrain Model, and CSM = Crop Surface Model 
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Figure 1.  Available baling days (4-day window) in across the entire hay season in Kentucky from 2000 
to 2021. Four-day window only considers rain events.

Figure 2. Available baling days (4-day window) in May across Kentucky from 2000 to 2021. Four-day 
window only considers rain events.
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Figure 3. Front and side overlap along UAV flight paths.


